
Received 12 October 2024; revised 13 January 2025; accepted 22 February 2025.
Date of publication 3 March 2025; date of current version 18 March 2025.

Digital Object Identifier 10.1109/OAJPE.2025.3545858

Data-Driven Chance-Constrained Capacity
Offering for Wind-Electrolysis Joint Systems

XUEMEI DAI 1, CHUNYU CHEN 2, BIXING REN 3, AND SHENGFEI YIN4

1College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

3State Grid Jiangsu Electric Power Company Ltd. Research Institute, Nanjing 211103, China
4Ascend Analytics, Boulder, CO 80302 USA

CORRESPONDING AUTHOR: C. CHEN (chunyuchen@cumt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 52207142 and Grant 62233006,
and in part by Shanghai Sailing Program under Grant 22YF1414800.

ABSTRACT An alkaline water electrolyzer (AWE) that converts surplus electricity from fluctuating power
of a wind farm (WF) is a promising technology for large-scale and cost-effective hydrogen production.
By considering the complementarity of the AWEs and the WF in offering market services, this paper treats
the AWE and theWF as a coalition and proposes a joint bidding strategy in the energy and regulation markets
to maximize the coalition’s revenue. To overcome the influence of wind and hydrogen uncertainties, we first
establish a data-driven distributionally robust chance-constrained bidding model, which reduces market risks
by observing uncertainty-related chance constraints for any distribution in the ambiguity set. Then, we use
the Shapley value method to evaluate the marginal contribution of the AWE and the WF. Further we propose
a game-theory-based bidding revenue allocation scheme. Eventually, case studies based on real-world market
data demonstrate that the total profit of the proposed joint bidding strategy increases 27.4% if compared with
individual bidding strategy. The average marginal cost of hydrogen production can be reduced by 5.1 $/kg
if compared with only participating in the energy market.

INDEX TERMS Alkaline water electrolyzer, joint bidding, distributionally robust chance-constrained
optimization, revenue allocation, wind power.

NOMENCLATURE
A. INDICES AND SETS
w Set of wind farms (WFs).
e Set of alkaline water electrolyzers

(AWEs).
t Set of time periods.
P Probability distribution.
D0 Ambiguity set.

B. PARAMETERS
Pw,t Predicted power of the WF [MW].
Pratew The rated capacity of the WF [MW].
Pmin /max
e The minimum/maximum operating

power by the AWE [MW].
Pe,up/dn The maximum ramping up /ramping

down power [MW].
LH ,min /max The minimum/maximum hydrogen

production [kg].

λDA/RTt Day-ahead/ real-time energy price
[$/MWh].

λ
cap/perf
reg,t Capacity/ mileage price in the regula-

tion market [$/MWh].
HP Hydrogen market price [$/kg].
ηe Efficiency of the AWE.
Rmil
t Mileage multiplier.
St Performance score.
k1/k2 The maximum ratio of the qualified

wind power/ AWE capacity for regu-
lation to the rated capacity.

C. VARIABLES
Cfle
w,t The total capacity flexibility of WF

[MW].
PDA/RT
w,t Capacity flexibility of WF in the

day-ahead/ real-time energy market
[MW].
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C reg
w,t Capacity flexibility of WF in the reg-

ulation energy market [MW].
Cup/dn
w,t Up-regulation/down-regulation by the

WF [MW].
Uw,t A binary variable representing partic-

ipation in up-regulation.
Cfle
e,t The total capacity flexibility of AWE

[MW].
PDA/RT
e,t Capacity flexibility of AWE in the

day-ahead/ real-time energy market
[MW].

C reg
e,t Capacity flexibility of AWE in the

regulation energy market [MW].
Cup/dn
e,t Up-regulation/down-regulation by the

AWE [MW].
Pacte,t The consumed electricity by AWE

[MW].
ht Hydrogen production [kg].
Ue,t A binary variable representing partic-

ipation in up-regulation.
PDAt The biddable capacity of WEJS in the

day-ahead energy market [MW].
Cup/dn
t Up-regulation/down-regulation

capacities of WEJS [MW].
1Pt Total imbalance in the real-time mar-

ket [MW].
1P+/−

t Sold/purchased power in the real-time
marke [MW].

µt Up-regulation/down-regulation
capacities of WEJS [MW].

1Pt A binary variable that indicates
whether buying power.

I. INTRODUCTION

W ITH the aggravation of the energy crisis, green hydro-
gen production has attracted much attention due to

its zero-carbon-emission characteristics. Currently, the indus-
try adopts alkaline water electrolysis technology to convert
surplus electricity from fluctuating renewable energy such as
wind power, realizing cost-effective and large-scale hydrogen
production [1]. In this situation, integrated alkaline water
electrolyzers (AWEs) and renewable energy farms become
grid-connected coalitions that are capable of providing var-
ious market services. From the perspective of these newly
developed coalitions, it is essential to investigate profitable
offering or bidding strategies across different markets.

Recently, the joint participation of heterogeneous dis-
tributed energy resource (DER) aggregators has attracted
interest from researchers in energy arbitrage [2], [3], pri-
mary [4], [5], and regulation ancillary service [6], [7].
In the modern power system, flexible DERs or concentrating
resources reshape both the demand and supply side flexibility
and can participate in various markets including the ancillary
service markets (ASM) [8]. The flexibility, which charac-
terizes a resource’s capacity to cover fluctuating demand,

can be allocated via interrelated market interaction [9]. Bat-
tery energy storage systems (BESS) are among the most
promising DERs for offering multi-market capacity flexi-
bility. Various researchers investigate how BESS supports
renewable generation in multiple markets [10], [11], [12].
Emulating large-scale generation, DERs can form virtual
power plants (VPP) or aggregators to participate in mar-
kets [13]. Consequently, the joint bidding for economic,
environmental, and other goals is intensively studied for
VPPs and aggregators [14], [15], [16].

Though various studies have addressed joint bidding of
DER-based VPPs and aggregators, very few researchers con-
sider how a wind-electrolysis joint system (WEJS) behaves
in joint energy and regulation markets. Similar to VPPs
or aggregators, WEJSs can also flexibly participate in both
energy and regulation markets [17]. Specifically, a WEJS can
sell the hydrogen produced by AWEs to obtain extra prof-
its, meaning that the WEJS can cooperatively offer capacity
flexibility among triple markets (i.e., energy markets, regula-
tion markets, and hydrogen markets). In [18], a coordinated
energy-trading and benefit-sharing strategy based on Nash
bargaining theory is proposed for the decision-making of
wind-hydrogen fueling stations in the energy market. By con-
sidering the inherent spatiotemporal imbalance between
renewable energy and hydrogen demand, [19] investigate the
optimal investment and operation of electrolyzers and storage
to increase wind power absorption. Ref. [20] presents optimal
rating and dispatch plans for renewable energy-hydrogen
production stations in the ancillary market.

The inherent uncertainty of wind significantly impacts
its use as a resource for AWEs. To address this, existing
research primarily relies on stochastic programming (SP)
[21] and robust optimization (RO) [22]. SP assumes that
decision-making is guided either by known probability dis-
tributions or by large datasets of samples. However, exact
probability distributions are often impractical to obtain, and
relying on sample-based methods can lead to errors when
the dataset is insufficient. For instance, [23] introduces a
two-stage stochastic optimization model for integrated elec-
tric and hydrogen systems to manage the uncertainty of
wind power generation effectively. In contrast, RO identifies
optimal solutions under worst-case scenarios by defining
an uncertainty set. Although this approach provides robust
results, it often leads to overly conservative outcomes. For
example, [24] presents a robust bidding optimization model
for wind-electrolysis systems operating in energy and reg-
ulation markets, explicitly accounting for wind uncertainty.
To overcome these limitations, distributionally robust chance
constraints (DRCC) have emerged as a promising alternative.
DRCC strikes a balance between the flexibility of SP and
the caution of RO, leveraging partial distributional informa-
tion to provide moderate robustness. A KL-divergence-based
DRCC model, as proposed in [25], effectively handles wind
uncertainty and enhances the performance of wind-hydrogen-
storage systems. Nevertheless, to the best of the knowledge of
the authors, few researcher has considered the joint bidding
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of WEJSs under multiple uncertainties, which cannot be
ignored due to the stochasticity and intermittency of wind
power. The upstream wind power uncertainty directly leads
to the downstream hydrogen uncertainty. Further, the con-
version efficiency of the AWE is uncertain at different load
ratios and ambient temperatures, aggravating the uncertainty
of hydrogen production. The resulting dual uncertainties of
wind energy and hydrogen simultaneously affect both the
electricity and hydrogen markets, incurring security risks.
Therefore, it is necessary to develop new bidding strategies
to handle these dual uncertainties.

In addition, a fair revenue allocation scheme is preferred
for both the WF and the AWE of the WEJS. There are
generally three main methods for revenue allocation in coop-
erative game theory: the Shapley value method [26], the
Nucleolus method [27], and the Bargaining solution [28].
In [29], an improved Shapley-value-based profit allocation
method is introduced for multiple DERs within a combined
heat and power virtual power plant (CHP-VPP), aiming to
achieve optimal profit distribution. Similarly, [30] employs a
cost allocation method based on the Nucleolus to ensure fair
cost sharing among members of a microgrid alliance, thereby
maintaining the economic stability of the alliance. Further-
more, [31] proposes a profit allocation model grounded in
the Nash-Harsanyi bargaining game theory, which accounts
for the actual contributions of individual participants. In this
paper, the Shapley-value method, known for its properties of
global and coalitional rationality, is utilized to fairly quantify
participants’ payoffs within an integrated model.

In this paper, we treat AWEs and WFs as a coalition
and propose a joint risk-averse bidding strategy based on
the data-driven DRCC optimization method. The aim of this
paper is to explore an optimal trading mechanism for the
WEJS and to solve the revenue allocation problems between
AWEs and WFs. According to the comparisons in Table 1,
the main contributions are summarized as follows:

• A cooperative scheme in the regulation markets for a
WEJS to maximize the revenue is proposed. By con-
sidering the complementarity of AWEs and WFs in
offering regulation services, AWEs andWFs are coupled
to respond to upward or downward regulation signals to
increase the regulation trading revenue and reduce the
hydrogen production marginal cost.

• A risk-averse bidding strategy based on the data-driven
DRCCmodel that implements the cooperative scheme is
developed. The dual uncertainties of wind and hydrogen,
are explicitly modeled by observing uncertainty-related
chance constraints for distributions in the ambiguity set.

• A game-theory-based bidding profit-sharingmechanism
to reasonably distribute the market revenue among
AWEs and WFs is proposed. The Shapley value method
is employed to evaluate the marginal contributions of
AWEs and WFs.

The remainder of the paper is organized as follows.
Section II presents the detailed model of the capacity flexi-
bility of WFs and AWEs; Section III addresses the optimal

TABLE 1. Comparisons of related literature.

bidding strategies and profit-sharing mechanism, and case
studies and relevant results are presented in Section IV.
Section V concludes the paper.

II. CAPACITY FLEXIBILITY OF WIND-ELECTROLYSIS
JOINT SYSTEM
In this section, We first describe the general framework
of multi-market participation of wind-electrolysis joint sys-
tem. Then separately formulate the capacity flexibility of
WFs and AWEs for participating in different markets. Next,
we quantify the integrated capacity flexibility of the WEJSs
considering the complementarity of WFs and AWEs. Even-
tually, we deploy the Wasserstein-distance-based ambiguity
set to characterize the uncertain capacity flexibility of the
WEJSs, which lays a foundation for the joint bidding model
and strategy design in section III.

A. GENERAL FRAMEWORK OF MULTI-MARKET
PARTICIPATION OF WIND-ELECTROLYSIS JOINT SYSTEM
Fig. 1 presents the general framework of WEJS participating
in energy, regulation, and hydrogen markets. When partici-
pating in the energy market, the WF can exchange energy
flexibility with the AWE to increase the overall benefits.
Thus, the AWE enables the utilization of surplus wind power
to realize arbitrage by selling the produced hydrogen in the
hydrogen market, which is beneficial for the WEJS when
the price gap between electricity and hydrogen is large. For
the regulation market, the regulation power is distributed to
utilize the complementary capacity flexibility of theWFs and
AWEs. When the down-regulation requirement is released,
the output of wind will be reduced first, and then the con-
sumption of the AWEwill be increased. In contrast, while the
up-regulation is required, the consumption of the AWE will
be reduced first, and then the output of windwill be increased.

B. CAPACITY FLEXIBILITY OF WIND FARM
By dispatching power control orders to individual wind tur-
bines, a WF can preserve capacity flexibility by flexibly
allocating its capacity in different electricity markets (e.g.,
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FIGURE 1. Frame of participating in energy, regulation, and
hydrogen market.

energy and regulation markets). Eqs. (1)-(5) shows the capac-
ity flexibility of a WF in the form of operating constraints.
Eq. (1) represents the overall WF capacity flexibility, which
contains the capacity flexibility in the day-ahead energy
market and regulation market. Eq. (2) indicates that the
regulation bid includes up-regulation and down-regulation.
Due to the ramping limits of the wind generator, eq. (3)
enforces that day-ahead energy market capacity flexibility
minus the down-regulation capacity flexibility cannot be
lower than zero. Eq. (4) enforces that day-ahead market
capacity flexibility plus the up-regulation capacity flexibility
cannot surpass the maximal available power. Eqs. (5)-(6)
show maximal up-regulation and down-regulation capacity,
in which κ1 denotes the maximum ratio of the qualified wind
power capacity for regulation to the rated capacity Pratew and
Uw,t is a binary variable representing the state of wind.

Cfle
w,t = PDAw,t + C reg

w,t (1)

C reg
w,t = Cup

w,t + Cdn
w,t (2)

PDAw,t − Cdn
w,t ≥ 0 (3)

PDAw,t + Cup
w,t ≤ Pw,t (4)

Cup
w,t ≤ κ1Pratew Uw,t (5)

Cdn
w,t ≤ κ1Pratew (1 − Uw,t ) (6)

C. CAPACITY FLEXIBILITY OF ALKALINE WATER
ELECTROLYZER
Currently, the commonly used electrolytic hydrogen produc-
tion devices include alkaline water electrolysers and proton
exchange membrane (PEM) electrolysers. This study focuses
on AWE modeling; however, as demonstrated in [32], PEM
electrolyzers can also be integrated into the proposed model
if required. Specifically, AWEs can provide grid flexibility
services by changing power consumption. Eq. (7) describes
the overall capacity flexibility of the AWE across energy and
regulation markets. Eq. (8) indicates that the regulation bid
including up-regulation and down-regulation. The consumed
electricity by the AWE is shown in (9). Eq. (10) enforces that
the range of the consumed and purchased electricity by the
AWE is constrained by the maximum operating power and
minimum operating power of the AWE. Eq. (11) shows the
ramping constraint for the AWE, Pe,up and P e,dn represent
maximum ramping up and ramping down power. Eq. (12)
shows the constraints for the regulation capacity,C reg,min

e and

C reg,max
e are the minimum and maximum regulation capacity.

Upward and downward regulation capacities limits are pre-
sented in (13) and (14), respectively. Ue,t is a binary variable
that indicates whether AWEs are participating in the up-
regulation market. The relation between hydrogen production
ht and power consumption Pacte,t is given in (15). ηe

(
Pacte,t

)
represents the efficiency of the AWE, which is affected by the
consumed power Pacte,t . This is a nonlinear constraint, and we
deploy the piecewise linear method to approximate it [33].
Considering the hydrogen load requirements, the output of
the AWE should satisfy the boundary constraint, as shown in
Eq. (16).

Cfle
e,t = PDAe,t + C reg

e,t (7)

C reg
e,t = Cup

e,t + Cdn
e,t (8)

Pacte,t = PDAe,t + Cdn
e,t − C up

e,t (9)

Pmin
e ≤ Pacte,t ,P

DA
e,t ≤ Pmax

e (10)

−Pe,dn ≤ PDAe,t − PDAe,t−1 ≤ Pe,up (11)

0 ≤ C reg
e,t ≤ κ2Pmax

e (12)

0 ≤ Cup
e,t ≤ (PDAe,t − Pmin

e )Ue,t (13)

0 ≤ Cdn
e,t ≤ (Pmax

e − PDAe,t )(1 − Ue,t ) (14)

ht = ηe
(
Pacte,t

)
Pacte,t (15)

LH,min ≤

T∑
t=1

ht1t ≤ LH,max (16)

D. COMPLEMENTARY CAPACITY FLEXIBILITY OF WIND
FARM AND ALKALINE WATER ELECTROLYZER COALITION
WFs and AWEs have different flexibility characteristics.
Specifically, on one hand, wind energy is generally consid-
ered a good candidate for regulation provision due to its fast
response-ability. On the other hand, however, it is desired
for wind plants of the WF to adopt maximum power point
tracking (MPPT) mode to achieve full utilization of renew-
able energy.When offering down-regulation services, theWF
can directly profit by reducing generation. However, in order
to provide up-regulation services, the WF is forced to reduce
power output to spare certain capacity for up-regulation need,
which reduces the expected profit of offering this reduced
power in the markets. Therefore, it is more profitable to
use WFs to provide down-regulation than to provide up-
regulation services.

Similar to WFs, directly controlling AWEs to participate
in regulations will cause negative effects. To provide down-
regulation services, the AWE needs to reduce the load ratio
to reserve a considerable amount of power, which will lead
to the reduction of the hydrogen production and extra power
purchase to fill this hydrogen imbalance. Contrarily, when
offering up-regulation services, the AWE can simply reduce
consumption in response to automated signals. Therefore, it is
more profitable to use AWEs to provide up-regulation than to
provide down-regulation services.

Based on the analyses above, WFs and AWEs are
highly complementary to each other in providing frequency
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regulation (FR) services. By taking advantage of this com-
plementary flexibility, WFs and AWEs can operate in a
cooperative mode to participate in FR. The up-regulation
signals are primarily responded by reducing the power
consumption of AWEs while the down-regulation signals
primarily responded by reducing the power output of WFs.
In the cooperative mode, both PDAw,t and P

DA
e,t can be close to

themaximumpower. The increase inPDAw,t andP
DA
e,t can reduce

the reservedwind capacity and increase hydrogen production.
It should be noted that, in practice, the optimal utiliza-

tion of these resources depends on a range of complex
factors. On the one hand, technical aspects such as respon-
siveness, operating range, and efficiency play a critical
role. On the other hand, economic considerations, including
market prices, access to markets, wind profitability, and busi-
ness models, significantly influence decision-making. Future
research could further investigate the interactions between
these factors and their impact on real-world outcomes.

E. UNCERTAINTY OF CAPACITY FLEXIBILITY OF WIND
FARM AND ALKALINE WATER ELECTROLYZER
The WF capacity flexibility can be uncertain due to the
uncertainty of wind power forecasting. In addition, the capac-
ity flexibility of wind power-driven AWE is also uncertain.
Therefore, characterizing the uncertainty capacity flexibility
before proposing the bidding strategy is needed. It should
be noted that the probability distribution function (PDF) of
neither wind power nor hydrogen is known, and it is diffi-
cult to evaluate the PDF accurately. In this paper, we adopt
the DRCC method and build a data-driven ambiguity set
to characterize the uncertainties in the capacity flexibility
model. Instead of using the moment ambiguity set which
may lead to overly conservative solutions, we adopt the
Wasserstein-metric-based ambiguity set for more flexible
representation. Wasserstein-metric-based ambiguity set mea-
sures the distance between probability distributions, allowing
the ambiguity set to capture complex distributions that
may not be well-represented by a simple geometric shape
in the traditional box or ellipsoidal ambiguity sets. Let
ξ =

[
Pw,t ,Pe,t

]
denote the set of random parameters

in the capacity flexibility model. Based on the sample set{
ξ1i , ξ2i , . . . , ξNi

}
i=1,2, the empirical distribution PNi which

can be regarded as an estimation of the true distribution is
formulated as follows:

PNi =
1
N

∑
j∈N

δ
ξ
j
i

(17)

where δ
ξ
j
i
represents the Dirac measure on ξ

j
i and N denotes

the value of independent samples.
The distance between two discrete distributions of P and

PNi is formulated by:

W
(
P, PNi

)
= inf

{∫
d
(
ξ1i , ξ2i

)∏(
dξ1i , dξ2i

)}
(18)

d
(
ξ1i , ξ2i

)
=

∥∥∥ξ1i − ξ2i

∥∥∥ (19)

FIGURE 2. The proposed framework for the joint bidding and
revenue allocation of WEJS.

where,
∏(

dξ1i , dξ2i

)
denotes the joint distribution of ξ1i and

ξ2i with marginal distribution P and PNi , respectively; d is a
1-norm function.

The ambiguity set is defined as:

D0 =

{
P ∈ M (4)

∣∣∣W (
PNi , P

)
≤ ρ

}
(20)

where,M (4) is a Wasserstein ball centered on the empirical
distribution with radius ρ. The radius ρ controls the degree
of the conservativeness of the model, which can be expressed
as:

ρ = D

√
2
N

log
(

1
1 − β

)
(21)

where β represents the prescribed confidence level and D
denotes the constant coefficient.

III. OPTIMAL JOINT BIDDING STRATEGY OF
WIND-ELECTROLYSIS JOINT SYSTEM
This section presents the proposed joint bidding strategy
for the WEJS. In this study, it is assumed that hydrogen
generated by AWEs can be stored indefinitely in a hydrogen
tank without degradation or loss. Moreover, both wind energy
and AWEs are treated as price-takers, submitting bids in the
day-ahead market and clearing deviations in the real-time
market [34]. The overall optimization framework is presented
in Fig. 2, which includes an optimal bidding strategy and a
revenue allocation mechanism. Furthermore, we formulate a
risk-averse biddingmodel based on the DRCCmethod to deal
with the uncertainties associated with WF and AWE capacity
flexibility.

A. JOINT BIDDING OPTIMIZATION MODEL:
DETERMINISTIC CASE
The objective of the optimal bidding strategy, as expressed
in Eq. (22), is to maximize the revenue PF . Here, PF rep-
resents the total profit, which encompasses the combined
revenue from the energy, regulation, and hydrogen markets.
Eq. (23) defines the revenue PFE from the energy market,
which consists of two components: 1) the revenue from the
day-ahead energy market, and 2) the imbalance cost resulting
from deviations between day-ahead commitments and real-
time deliveries, settled at the real-time market price. This
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two-settlement structure ensures that the WEJS accounts for
both commit and actual energy schedules. Eq. (24) describes
the revenue PFR from the regulation market, modeled using
a performance-based regulation scheme inspired by the PJM
market [35]. The regulation revenue includes two parts: 1) the
capacity payment (the first term in (24)), which compensates
for the reserved regulation capability, and 2) the performance
payment (the second term in (24)), which rewards the actual
mileage provided during regulation service. Eq. (25) repre-
sents the revenue PFH from the hydrogen market, where
participants submit hydrogen production offers to the system
operator (SO). The SO optimizes these offers and clears
the market to determine the accepted hydrogen production
quantities, which are settled at the hydrogen market priceHP.

PF = PFE
+ PFR

+ PFH (22)

PFE
=

T∑
t

(λDAt PDAt + λRTt 1P+
t − λRTt 1P−

t ) (23)

PFR
=

T∑
t

(λcapreg,tC
reg
t St + λ

perf
reg,tC

reg
t Rmil

t St ) (24)

PFH
= HP

T∑
t

ht (25)

PDAt = PDAw,t + PDAe,t (26)

Cup
t = Cup

w,t + Cup
e,t (27)

Cdn
t = Cdn

w,t + Cdn
e,t (28)

(3) − (6), (9) − (16) (29)

1Pt = PDAw,t − PRTw,t + PDAe,t − PRTe,t (30)

1Pt = 1P+
t − 1P−

t (31)

0 ≤ 1P+
t ≤ µtPmax

im (32)

0 ≤ 1P−
t ≤ (1 − µt)Pmax

im (33)

The constraints of the optimal bidding strategy of the
WEJS are described in (26)-(30). Eq. (26) indicates the
day-ahead supply of energy. Eqs. (27)-(28) indicate the
up-regulation and down-regulation capacities that are sup-
plied by the aggregated flexibility of the WEJS. The
up-regulation capacity is mainly offered by the AWE,
whereas the down-regulation capacity is provided by the WF.
The constraint for wind farms and the AWE participating in
the energy and regulation market is stated in (29). Eqs. (30)-
(33) show the constraints for system imbalance.

B. JOINT BIDDING OPTIMIZATION MODEL: STOCHASTIC
CASE
This section studies how the WEJS achieves the risk-averse
bidding strategy under uncertainties. We use chance con-
straints to formulate the bidding limits of WEJS, thus
enhancing the system reliability under ambiguous sets:

inf
P∈D0

EP

(
PDAw,t + Cup

w,t ≤ Pw,t

)
≥ 1 − ε (34)

inf
P∈D0

EP

(
LH,min ≤

T∑
t=1

ht1t ≤ LH,max

)
≥ 1 − ε (35)

where ε ∈ (0, 1) represents the risk tolerance of the chance
constraint, which specifies the maximum allowable proba-
bility of constraint violation. A smaller ε reflects a more
risk-averse approach, ensuring stricter adherence to the con-
straint, while a larger ε indicates a higher tolerance for risk,
allowing for a greater probability of constraint violation. The
complete optimization model is formulated as follows:

max (22) (36)

s. t.: (3), (5),(10)-(15),(23) - (28), (30) − (35) (37)

The non-convex nature of chance constraints often poses
significant challenges in deriving a tractable reformulation.
In this paper, we address this issue by employing a Condi-
tional Value-at-Risk (CVaR) approximation method, which
offers a more practical and efficient approach for handling
the complexity of such constraints.

The general formulation of DRCCs can be expressed as
follows:

inf
P∈D

P
{
αk (x) ξ̃i ≤ βk (x)

}
≥ 1 − ε (38)

where the chance constraint is indexed by k . αk and βk
represent affine mappings. Based on the CVaR constraints,
Eq. (38) is approximated by:

sup
P∈D0

P − CVaRε

{
αk (x) ξ̃i ≤ βk (x)

}
≤ 0, ∀k ≤ K (39)

Based on the polyhedron set 4 =

{
H ξ̃i ≤ h

}
, Eq. (39) can

be further formulated as the explicit conic form:

inf
P∈D0

P
{
αk (x) ξ̃i ≤ βk (x)

}
≥ ε

=



λkρ +
1
N

M∑
n=1

sik ≤ 0

τk ≤ sik
αk (x) ξ̃i − βk (x) + (ε − 1) τk + εγ Tik

(
h− H ξ̃i

)
≤ εsik∥∥∥εHT γik − αk

∥∥∥
∗

≤ ελk

(40)

where λk , sik and τk denote auxiliary variables. γik is a
decision variable. N represents the sample sizes.

C. COOPERATIVE GAME-THEORY-BASED PROFIT
ALLOCATION METHOD
Due to the complementary capacity flexibility of WFs and
AWEs, they can obtain more revenue from cooperation. Thus,
the surplus profits demand a reasonable payoff allocation
to share between the WF and the AWE. In this section,
considering the flexibility performance of each participator,
we employ the cooperative game theory method to fairly dis-
tribute the revenue. The collaborative revenue v is formulated
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TABLE 2. Parameters of alkaline water electrolyzers.

FIGURE 3. Wind power data for a sample day.

in (41). The Shapley value of each participator can repre-
sent its flexibility performance and marginal contribution in
the coordinated bidding behavior, which can be determined
by (42) [27].

v =

n∑
i=1

xi∀i ∈ n (41)

xi (v) =

∑
S⊆N\i

m! (n−m− 1)!
n!

[v (S ∪ {i}) − v (S)] (42)

where, xi represents the allocated revenue of the ith participa-
tor, and v (·) denotes the revenue of each possible coalition.
The set of all coalitions is denoted as S, and S ⊆ N\i is the set
of all sub-coalitions without ith participator. xi (v) represents
the Shapley value of ith participator, which is calculated
based on the weighted average of its marginal contributions
to each sub-coalition.

IV. CASE STUDY
In this section, we test the performance of the proposed
bidding strategy using real market data. All simulations are
implemented on a laptop with 2.50 GHz, Intel Core i7-7200
CPU using Gurobi and Matlab.

A. DATA INFORMATION
ThreeWFs and twoAWEs are selectedwith different capacity
flexibility to verify the performance of the proposed strategy.
Fig. 3 shows the average wind power curve for a sample day.
Parameters of the AWEs are listed in Table 2. The maximum
ratio of the capacity flexibility of WFs and AWEs to regula-
tion capacity (κ1 and κ2 ) is 30% and 50%, respectively.
We use historical WF data in Fig. 3 from the PJM market

to build the ambiguity set [36]. The expected energy prices,

FIGURE 4. Expected hourly energy prices and capacity/
performance regulation prices.

TABLE 3. Economic benefit comparison of different cases.

including day-ahead, real-time market prices, regulation
market capacity clearing prices, and regulationmarket perfor-
mance clearing prices are obtained from the PJMmarket [36]
and presented in Fig. 4. The average mileage ratio of RegD
and performance score are calculated based on their historical
performance. The hydrogen price is set at 6 $/kg [37].

B. COMPARISON OF STOCHASTIC BIDDING AND
REVENUE ALLOCATION RESULTS
We study the following three bidding cases:

Case 1: Individual bidding strategy, in which WFs and
AWEs participate in the joint markets separately, without any
coordination or cooperation.

Case 2: Coordinated bidding strategy I, in which WFs and
AWEs participate in the joint markets cooperatively.

Case 3: Coordinated bidding strategy II, in whichWFs and
AWEs only bid in the energy market cooperatively.

Fig. 5 shows stochastic bidding results on a typical day.
Fig. 5 (a) presents the bidding results of WFs and AWEs
participating in the joint markets separately. Fig. 5 (b) shows
the bidding results of the WEJS in the joint markets, and
Fig. 5 (c) presents the bidding results of the WEJS participat-
ing only in the energy market. Compared with the individual
bidding strategy in Fig. 5 (a), theWFs provide less capacity in
the up-regulation market under the cooperative strategy. The
average wind power excess shown in Fig. 5 (b) is reduced by
approximately 4% of the rated wind power. Most of the AWE
capacity is submitted to the down-regulation market and the
hydrogen production is increased by 10.6 %.

Table 3 compares the economic profits for the three cases.
Compared with the individual bidding strategy in case 1, the
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FIGURE 5. DRCC bidding results (a) Case 1 (b) Case 2 (c) Case 3.

regulation revenue of the WEJS in case 2 gives an increase
of 28.9 %, which indicates that the proposed cooperative
strategy can effectively improve regulation bidding profits by
taking advantage of the complementarity of AWEs and WFs
in offering FR services. It can also be observed that the hydro-
gen revenue of the WEJS in case 2 increases from $2,449
to $3,300, and the total revenue increases 34.3%, which
further demonstrates the benefits of cooperative strategy for
the joint markets bidding. In case 1, the total cost of the AWE
for purchasing electricity is $5,504, while the revenue for
selling hydrogen is $2,449. It indicates that the AWE can
hardly benefit from converting electricity into hydrogen in the
energy market. This is reasonable since the purchasing price

TABLE 4. Comparison of results of allocated profits based on
the game-theory methods.

is generally higher than that of hydrogen and the efficiency of
the electrolysis is relatively low. Meanwhile, the AWEs can
profit from providing regulation services, which is $4,061.
The revenue of the AWEs can be significantly improved by
considering regulation services, which makes the total payoff
of the AWE positive. The marginal benefit of the AWE from
participating in the regulation market can be formulated as:

1Incomet = ηeHp

(
PDAe,t − StC

reg
t

)
× Creg

t

(
λ
cap
reg,t + λ

perf
reg,tR

mil
t

)
− ηeHpPDAe,t (43)

Then the reduced marginal cost of hydrogen production by
participating in the frequency market is:

1Cost = 1Income/h =
λ
cap
reg,t + λ

perf
reg,tR

mil
t

ηe (1 − St)
−

HpSt
1 − St

(44)

Under case 2, the average marginal cost of hydrogen
production is reduced by 5.1 $/kg, which shows that the
WEJS participating in the regulation market can effectively
reduce the cost of hydrogen production. When comparing
Case 2 with Case 3, the total revenue in Case 2 is 40.6%
higher, highlighting the significant economic benefits derived
from regulation market participation. While the total cost in
Case 3 is lower than in Case 1, the results clearly demon-
strate that mere participation in the energy market does not
yield the expected economic benefits. Instead, it is the inclu-
sion of regulation market participation that drives substantial
improvements in overall performance. This highlights the
strategic importance of leveraging both energy and regulation
markets to maximize profits. Therefore, it is advantageous
for market participants to engage in both the energy and
regulation markets simultaneously.

Through the Shapley allocation method, the payoffs of
WF and the AWE are reallocated based on their contribu-
tions to the coalition, which is presented in Table 4. The
results indicate that the reallocated profit for the WFs in
case 2 is $35,627, which shows a 30.3% increase compared
with case 1. In addition, it can be observed that the surplus
profits are not equally distributed among WFs and AWEs.
For WFs, more profits is allocated to the WF3, while for
AWEs, more profit is allocated to AWE2. The total surplus
profit can reach $18,763, which further demonstrates that
the coordination of the WFs and the AWES can bring more
profits.
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FIGURE 6. Comparison among bidding results with different
Wasserstein radius (a) WFs (b) AWEs.

C. ANALYSIS OF ROBUSTNESS
1) IMPACT OF WASSERSTEIN RADIUS
We conduct a sensitivity analysis of the Wasserstein radius to
verify its impact on the bidding results. When the Wasser-
stein radius ranges from 0.1 to 0.3, the bidding results in
case 1 are shown in Fig. 6. From Fig. 6, it can be observed
that with the increase of the value of the Wasserstein radius,
energy arbitrage and regulation bids will decrease, leading
to lower profits. The reason is that the Wasserstein radius
measures the distance between the true distribution and the
empirical distribution. A large Wasserstein radius introduces
higher uncertainty and thus leads to a more conservative
bidding strategy and a decrease in wind utilization and rev-
enue. In contrast, a small Wasserstein radius may cause high
penalty costs due to disqualified market performance. The
result illustrates that a compromise between economic ben-
efit and robustness can be prescribed and regulated by the
Wasserstein radius.

Furthermore, Fig. 7 illustrates the impact of the Wasser-
stein radius ρ on CVaR and expected profit in case 2 (joint
market) and case 3 (energy market). The Wasserstein radius
ρ quantifies the range between the possible distribution and
the empirical distribution, with larger values of ρ indicating
higher levels of uncertainty. As depicted in Fig. 7, an increase
in the Wasserstein radius leads to a decrease in profit and
an increase in risk (CVaR). By comparing Fig. 7 (a) and (b),
it is evident that participation in the joint market yields higher

TABLE 5. Economic benefit comparison under the different value
of ε.

FIGURE 7. Impact of uncertainty on expected profit and CVaR:
(a) Case 2 (b) Case 3.

profits and lower risks compared to the single energy market.
Additionally, the results demonstrate that the single market
is more susceptible to uncertainty. Specifically, in the energy
market, CVaR nearly reaches its peak at a certain value of
ρ = 0.3, while in the joint market, CVaR continues to decline
as ρ increases, demonstrating the greater resilience of the
joint market to uncertainty.

2) IMPACT OF RISK PARAMETERS
Fig. 8 presents the bidding results in case 2 under different
violation probability ε. Total market profits in stochastic
cases are shown in Table 5.We can observe that the regulation
capacity and corresponding market profits increase with the
increase of ε (decrease of confidence level 1− ε), indicating
that the bidding results are sensitive to the choice of ε. Since a
larger ε tolerates a certain degree of probability in constraint
violation, the total market revenue will increase. The system
operators can obtain a trade-off between the operational risk
and economic benefits by considering the confidence level.
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FIGURE 8. Comparison among bidding results with different risk
parameters.

D. BENCHMARK WITH OTHER OPTIMIZATION METHODS
To investigate the performance of the proposed method, the
scenario-based SP andROmodels are compared. Fig. 9 shows
the optimal market profits obtained from SP, RO, and the
proposed method. The result indicates that the profits of the
proposed method are between RO and SP. RO and SP have
the lowest and highest market profits, respectively. This is
because RO ignores the distribution information of the uncer-
tain parameters and considers the worst-case scenario, which
makes RO too conservative to get optimal results. SP opti-
mization is implemented based on the predefined probability
distribution, which leads to an overly aggressive solution. The
proposed method, by contrast, adapts effectively to uncer-
tainty, offering a tradeoff that integrates the strengths of both
SP and RO.

Additionally, Fig. 9 demonstrates the influence of the his-
torical data sample size on system revenues. As the number
of samples increases, the ambiguity set shrinks, allowing the
probability distribution of forecast errors to converge more
closely to the true distribution. This reduces the conservative-
ness of the data-driven uncertainty set and the associated costs
forWEJS to address uncertainty, resulting in higher revenues.
Notably, as sample size grows, the revenue of the proposed
method gradually approaches that of SP, further showcas-
ing its adaptability and potential for enhancing economic
efficiencywhilemaintaining robustness. These findings high-
light the importance of leveraging extensive historical data to
optimize system performance.

E. SUMMARY
Overall, we can summarize results of the aforementioned case
studies as follows:

1) The coalition (i.e., WEJS) where the members (i.e., the
wind and the AWE) possessing inter-complementary
characteristics in offering in a specific market (i.e.,
the frequency regulation market) can make more prof-
its compared with the separate participation of each
member in this market (e.g., the wind farm participates
in the frequency regulation market). Besides, joint
participation in multiple markets, where prices vary

FIGURE 9. Comparison among bidding results with different
optimization methods.

across markets, could yield more profits than unilateral
participation in just one market. It inspires market engi-
neers to incorporate complementary resources into an
aggregator and make this aggregator offer in multiple
markets to elevate profits.

2) The DRCC-based approach enables the trade-off
between profitability and risk for the market partici-
pators. Different risk parameters will result in varying
degrees of conservatism. Compared with SP (over-
optimistic) and RO method (too conservative), the
DRCC-based approach could provide appropriate sug-
gestions for the market participator who pays attention
to both the expected profits optimization and risk
reduction by controlling the risk parameter.

V. CONCLUSION
In this paper, an optimal risk-averse bidding strategy and
profit-sharing mechanism for WFs and AWEs to partic-
ipate in the energy, frequency regulation, and hydrogen
markets is proposed based on the data-driven distribution-
ally robust chance-constrained method. We quantify the
capacity flexibility of the WEJS and propose a coopera-
tive bidding strategy based on the complementary capacity
flexibility of WFs and AWEs. Moreover, to deal with both
uncertainties of the wind capacity flexibility and hydrogen
energy, a data-driven DRCC model is formulated for WEJS
in the day-ahead and real-time market. Day-ahead imbal-
ances resulting from uncertainties are restrained by chance
constraints with worst-case distributions and provided by
real-time scheduling eventually. This model can effectively
balance the WEJS’s economic benefit and risk of uncer-
tainty according to its risk preference. Furthermore, Shapley
value-based profit-sharing mechanism is developed to fairly
distribute the benefits among participants according to their
flexibility contributions. Numerical studies demonstrate the
effectiveness and flexibility of the proposedmodel in terms of
the tradeoff between optimality and robustness. By utilizing
the complementary capacity flexibility of WF and the AWE,
the profit of the proposed cooperative bidding strategy is
increased by 27.4 % if compared with the individual bidding
strategy. In addition, compared with the SP and RO, the
proposed DRCC model has better risk-aver performance.

120 VOLUME 12, 2025



Dai et al.: Data-Driven Chance-Constrained Capacity Offering for Wind-Electrolysis Joint Systems

In future work, we plan to explore prediction methods for
market prices to further enhance the accuracy and reliability
of the bidding strategy.
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