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Abstract—The cross impacts between transmission and dis-
tribution systems have drawn extensive attention, where multi-
energy carriers become increasingly dominant in local market
operations. Local energy hubs, integrated with multi-energy
carriers, e.g., electricity, gas, heat, present great potentials to
provide adequate power and reserve support for the transmission
system, which could mitigate issues such as boundary mismatches
in the upstream market. However, energy hubs are typically
equipped with abundant distributed renewable resources. Such
local uncertainties can adversely affect the well-being of the
coordinated multi-energy market hierarchy. This paper presents
a novel multi-period scheduling framework that considers the
coordination between the transmission network and distribution
energy hubs. Each agent performs local scheduling operations
capturing independent uncertainties via a distributionally robust
formulation. We then apply a tailored accelerated augmented
Lagrangian algorithm embedded with the column-and-constraint
method to decentralize the overall operation with agents’ privacy
preserved. The fast and convergent feature of the algorithm
ensures its scalability and reliability in real-world applications of
the energy hub design with transmission coordination. Numerical
experiments confirm the efficacy of the proposed method.

Index Terms—Transmission and distribution coordination,
multi-energy carrier, distributionally robust optimization, decen-
tralization, augmented Lagrangian.

NOMENCLATURE
1) Sets:
T /D Transmission/distribution system components
S/N Sending/receiving bus of T&D lines
A Bus mapping of installed units
2) Indices:

g/r/f  Conventional unit/renewable unit/line
a/ag/af Gas retail/gas unit/gas pipeline
t/tg/tf Heat source/CHP/heat pipeline
{/al/tl Electric/gas/heat demand

e/ae PESS/GESS

n /an /tn Power bus/gas node/heat node

c Gas compressor

l/al/tl  Alias of power bus/gas note/heat node
h/H Operation time index/final time interval

3) Parameters:
Cy/Ce Operation costs for generators/ESS

Cy/Cy Curtailment costs for renewables/demand
Py 1, /Uge,n Electric/gas demand
Hth h Heat demand
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pprax [ prmin Maximum/minimum power capacity

pyrex Maximum flow limit

ynex /V.maxCurrent square/voltage square limit
RU,/RD, Ramp up/down limits

Ch,/Ch. ESS minimum/maximum charging limit
Dh,./Dh, ESS minimum/maximum discharging limit
SOC, ESS minimum SOC limit

SOC. ESS maximum SOC limit

SOC. o Initial ESS SOC

LR, Loss rate of the ESS
Ne Charging and discharging efficiency
X(1.i5) Reactance of line f or ij
Rrij Resistance of line f or ij
By/ BZ Downward/upward reserve requirement
Wiax Maximum gas nodal pressure
WV min Minimum gas nodal pressure
Bag Gas-power conversion factor
Ye / Qe Gas/inflow compressor factor
Oufr Weymouth coefficient
afh Maximum gas procurement
e Euler’s number
C; Water specific heat capacity
1}, Water pipeline ambient temperature
Atf Heat transfer coefficient of water pipelines
Ky Length of water pipelines
]57,,;,, Uncertain renewable maximum power point

4) Variables:

Dg.h/Pr.n  Active power of generators/renewables
dg.n/qrn  Reactive power of generators/renewables
De,h Active power of PESSs

Dn.h/qn,n,  Nodal active/reactive power injection
Dn.h/qn,r,  Nodal active/reactive power injection
Df.h Active transmission power flow

Dinn,h/ @mn, pActive/reactive distribution power flow
50Ce.h, SOC of ESSs

Sen/ Sae,n, Electric/gas demand curtailment

On,h Bus phase angle

b; n b; n  Reserve capacity secured by generators
Dag,h / ptg,h Active power output of gas unit/CHP
Gag,h / gtg,n Reactive power output of gas unit/CHP
Uq,h/Uqge,r, Gas procurement/gas output from GESS

Uaf,h Inactive gas pipeline flow
cm,in

Ut Inflow of gas compressors

ulo Outflow of gas compressors
afh & P

Wan,h Gas nodal pressure



hy Heat consumption of CHP

M7, /Mg];j’hMass flow rate in supply/return pipeline
M7, /MtLZh Mass flow rate in heat source/load

TS} frh Temperature at inlet of the supply pipeline
Tsé}fh Temperature at outlet of the supply pipeline
Trtf/}rh Temperature at inlet of the return pipeline
TT“%;CSh Temperature at outlet of the return pipeline
TSy h Heat source supply temperature

TT’%]’ h Heat source return temperature

TSton Heat load supply temperature

rl Heat load return temperature

Ts;';l’;ﬁ Mixture temperature at supply node

Tt Mixture temperature at return node

I. INTRODUCTION

LECTRICITY markets have been in a transitional stage

that follows from a top-down hierarchy to a bottom-up
one. As the local distribution networks and microgrids become
increasingly active, they attain a growing capability to provide
both power and ancillary service support to the upstream
operator. While the transmission system could not overlook
the local impacts, distribution system operators (DSOs) are
emerging to seek cooperation with the conventional indepen-
dent system operator (ISOs) for better managing a reliable
and efficient power grid [1]. The variable distributed energy
resource (DER) plays a critical role in this transition with
governmental incentives and regulations, e.g., FERC order
2222 [2]. Nevertheless, substantial operational uncertainties in
DERs such as wind and solar variations shape a bottleneck
when considering them in the market operation, especially
with the transmission and distribution (T&D) coordination.
The current research has conducted thorough investigations
in the impacts of variable DERs in the power sector, e.g., [3].
However, another non-negligible transition, i.e., the prolifera-
tion of multi-energy carriers in the local energy network, is
turning the power distribution system into a multi-energy hub.
Its coordination with the T&D market hierarchy has not been
sufficiently studied.

Existing literature has devoted considerable efforts to study-
ing T&D coordination. Designing the future DSO frameworks
gains prevalence since the ISO operation has been well struc-
tured and developed. As summarized in [4], there are three
stages of the DSO design philosophy and its coordination
scheme with the ISO, i.e., centralized, decentralized, and
transactive models. From first to last, the system of systems
becomes more flexible and distributed. Due to the natural
compatibility with the existing market framework, based on
the distribution utility model (Model 3) in [4], our previous
work [5] focuses on an ISO-leading unit commitment (UC)
problem capturing the individual system uncertainties. The
ISO still dominates the T&D market in this model, while the
DSO performs as a utility managing the local assets. In this
paper, we extend that work to investigate the case that both the
ISO and DSO act as independent entities based on Model 4
in [4], where the ISO cannot easily dominate the coordinated
market with no vision and control on DSOs. Entities only

exchange boundary information in the physical coupling node
and operate independent market operations. There will no
longer be an integrated UC problem as there is no central
operator, but a multi-objective and multi-agent optimization
problem, which could be formulated as a distributed economic
dispatch (ED). We refer to [6] for deeper discussions on
decentralized T&D cooperation.

The local energy system in the distribution level, however,
does not only serve electric power. The proliferating energy
hub in smart distribution systems houses multi-energy carriers,
within which the electric power, natural gas, and heat energies
are the most common and substantial [7]. It is natural that the
DSO takes the multi-energy carriers’ operations into account
when coordinating with the power transmission system since
other energy networks exert impacts on both system dynamics
and techno-economic values of the power distribution system.
However, the characteristics of each energy carrier are dif-
ferent and complex. For instance, the electric power flow in
the power distribution system and the gas pipeline flow in the
gas distribution system inflict nonlinearity and intractability
to the coordinated market model. In our paper, to retain con-
vexity, we propose using the second-order cone programming
(SOCP) to model the nonlinear AC power flow and the gas
flow equations while keeping the heat network linear via the
variable-temperature constant-flow (VTCF) model. Note that it
is normal to consider multi-energy carriers in the distribution
system to be operated by a single entity, i.e., the DSO. Many
utilities manage and operate multi-energy assets, including
power and gas, such as PG&E in California and ComEd in
Illinois.

Operational uncertainties, e.g., variable DER outputs, pose
another hurdle in the T&D coordination. Though many works
focus on the deterministic T&D operation due to the relatively
small variation in the distribution network [8], [20], [21],
it has been confirmed that a stochastic optimization-based
model yield greater economic values and better capture the
operation changes [10], [13]. Various stochastic optimization
techniques have been widely applied in T&D coordination,
among which the most common ones are scenario-based
stochastic programming (SP) [5] and robust optimization (RO)
[9]. The issue of the curse of dimensionality arises when the
number of scenarios increases to capture enough uncertain
patterns in the SP, and the over-conservatism of the RO
beclouds its applicability in normal system operations. In this
context, distributionally robust optimization (DRO) attracts
extensive attention to achieve a tradeoff between conservative-
ness and uncertainty realization, which outperforms SP and
RO as a general-use stochastic optimization framework [3].
It models the uncertainty by assuming an ambiguity set that
approximates its true probability distribution, which enjoys
broad applications in the literature. C. He et al. [22] adopted
DRO modeling a power-gas energy hub operation considering
electric and gas load uncertainties. D. Mohammadreza et al.
[23] proposed a two-stage transactive energy framework using
DRO to capture renewable DER uncertainties. P. Li et al. [10]
built a DRO chance-constrained distributed T&D coordination
problem with wind uncertainties.

The resulting T&D problem with energy hubs is highly



TABLE I
COMPARISON BETWEEN THIS PAPER AND STATE-OF-THE-ART STUDIES

Network Modeling

Domain Reference Problem — —— Renewables Operation Method Uncertainty Modeling
Transmission  Distribution
[8] ED Linear Linear X Decentralized Gradient Decomposition X
[9] ED Linear Linear v Decentralized ADMM RO
[10] ED Linear Linear v Decentralized  Analytical Target Cascade DRO
T&D [11] ED Linear Nonlinear v Centralized SOCP SP
[12] uc Linear Nonlinear X Decentralized Surrogate LR X
[5] ucC Linear Nonlinear v Decentralized Nested L-shaped SP
[13] ED Linear Nonlinear v Decentralized AAL RO
This paper ED Linear Nonlinear v Decentralized AAL DRO
Domain  Reference  Problem Power NetworkGl\:sodelmg Heat Operation Method Uncertainty Modeling
[14] ucC Linear X VTCF Centralized SOCP X
[15] ucC Linear Linear X Centralized Benders Decomposition X
[16] ED Linear Linear Linear Centralized Linear Programming SP
Ei_lﬁlrgy [17] ED Linear Nonlinear X Decentralized Benders Decomposition X
[18] ED Linear Nonlinear X Centralized Dual Reformulation DRO
[19] ED Linear X VTCF Decentralized ADMM X
[7] ED Linear Nonlinear VTCF Decentralized ADMM X
This paper ED Nonlinear Nonlinear VTCF Decentralized AAL DRO

Note: Please find acronym expansions in the text.

intractable due to the multi-scale T&D system characteristics
and the stochastic nature of DERs. Meanwhile, when the ISO
and DSO act as independent entities, they should execute
individual scheduling problems with the privacy of system
information preserved during the operation. Hence, centralized
decomposition techniques such as Benders decomposition [15]
are not applicable. Instead, ISOs and DSOs require distributed
algorithms to decentralize communications such as the well-
known augmented Lagrangian relaxation (LR) method. It
helps each agent formulate the individual subproblem and
only updates Lagrangian multipliers, i.e., gradient information,
in each iteration, protecting agents’ confidentiality. A re-
cent enhancement, i.e., the accelerated augmented Lagrangian
(AAL) [24], becomes a more efficient alternative than con-
ventional LR-based methods such as the alternating direction
of multipliers method (ADMM). Though originally devised
for solving nonconvex problems, the efficacy of the AAL has
also been validated in distributed convex applications with
better performance than ADMM [25]. To solve the DRO-based
subproblems for the ISO and DSOs, we propose using the
widely-adopted column-and-constrained generation (C&CG)
method [26], which is embedded in the AAL procedure
without jeopardizing the convergence.

Though the existing literature has conducted thorough re-
search in the T&D operation and distribution-level energy
hubs, to the best of the authors’ knowledge, this is the
first work investigating the impacts of multi-energy hubs in
the T&D electricity market. We also extend the application
of AAL to the DRO, which yields better performance and
economic outcomes than deterministic [25] and RO [13] ap-
plications. We conduct a comprehensive comparison between

this study and other recent works in Table I. Furthermore, we
summarize the threefold contributions of this paper as follows.

e We propose a novel multi-period scheduling framework
for coordination between the transmission system and
local energy hubs. The energy hub considers electric,
gas, and heat energies with explicit network and resource
modeling. The quantitative analyses demonstrate the cost-
effectiveness of considering multi-energy hubs in T&D
coordination.

¢ We implement a T&D market paradigm based on de-
centralized operations, which serves as a potential future
T&D market structure as discussed in [4]. Each agent
considers individualized uncertainties such as renewable
generation and multi-energy demand without impacting
others.

o We tailor the AAL algorithm with the C&CG method
and validates its applicability to a DRO-based multi-
agent distributed operation. The proposed method meets
the requirements for solving a stochastic T&D coordina-
tion problem, e.g., computational efficiency, convergence
guarantee, and privacy protection.

We organize the rest of the paper as follows. Section II
provides a detailed problem formulation for the transmission
system operation and the local energy hub scheduling while
also introducing the ambiguity set construction for each sys-
tem’s uncertainties; section III describes the decentralization
between agents and the overall solution procedure of the distri-
butionally robust T&D problem based on the AAL algorithm;
section IV demonstrates the effectiveness of the proposed
framework using numerical experiments; section V concludes
the paper with several technical remarks.



II. PROBLEM FORMULATION OF THE DRO-BASED
MULTI-ENERGY T&D COORDINATION

In this section, we detail the mathematical formulation of
the transmission system and local energy hubs, with uncertain-
ties involved in the variable renewable generation. A two-agent
co-optimization describes the T&D coordination with different
agent-specific modeling details. We consider the upstream
agent problem as a conventional economic dispatch carried
out for the transmission network with industry-calibrated DC
power flow. The problem for downstream agents is an SOCP-
based multi-energy hub optimization considering nonlinear
network equations for more accurate AC power and gas
pipeline flows. The heat network brings a linearized VTCF
model. Both agents follow a two-stage distributionally robust
optimization formulation with individualized ambiguity sets
for uncertainties.

A. Upstream Agent Problem: Transmission Market

The upstream agent solves a transmission ED problem
capturing utility-level wind uncertainties. We write a canonical
form of the formulation as shown in (1).
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T
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where XT {pg,h,pr DL 4 T h} is the first-stage deci-
sion variable vector and y’ = {quh, Sy, h} is the second-stage
decision variable vector. Formulation (1) follows a typical
day-ahead ED model, including the power balance equation
(1b), DC power flow equation (1c), flow capacity constraint
(1d), ramping constraints (le)-(1f), power capacity constraint
(1g), upward/downward reserve limit constraint (1h), reserve

requirements (li), and renewable curtailment equation (1j).
We slightly abuse the notation of subscript 7 in sets and
variables for readability. We also defer the ESS model in
the transmission system to Section III. C with a generalized
formulation. Note that we adopt the DC power flow to increase
the proposed model’s compatibility with the current ISO’s
practice [27]. In the objective function (la), the first-stage
cost contains the power generation cost and energy storage
system (ESS) degradation cost, and the renewable curtailment
cost and load shedding cost remain in the second stage. It is
natural to regard the first stage as a normal market clearing
and the second stage as an ex post adjustment during the
operation. Though we utilize linear cost coefficients in the
objective for showcase, it could adapt to more practical designs
such as the quadratic cost curve and more sophisticated ESS
degradation processes, which is out of the scope of this study
and requires unique treatments in the decentralization process.
In this case, the upstream agent features two-stage stochastic
linear programming.

B. Downstream Agent Problem: Multi-Energy Hub

The downstream agent solves a distribution ED problem
capturing DER-level uncertainties. However, the synergy be-
tween electric power, gas, and heat energies far complicates
the problem than the upstream agent.

D i=minC, (pgn) + €7 (PO4)+

sup  Epo{ min CP(b7,) + €7 (s}, @a)

PPeAP y
subject to
Constraints (3a)-(3n), (4a)-(4g), (5a)-(5h), (6a)-(6f), (2b)
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denote the production costs (including power generation cost,
gas procurement cost, and combined heat and power (CHP)
generation cost), multi-energy ESS degradation costs, DER
curtailment costs, and multi-energy load shedding costs, re-
spectively. Note that the first stage and second stage follow
the same structure as in the upstream agent with a similar
ambiguity set construction, which will be detailed in Section
III. D. Based on different energy systems’ characteristics, we
sectionalize the constraint space for electric power, natural gas,
and heat systems as follows. Besides, note that the convexifi-
cation of multi-energy network flow models is necessary for
finding a convergent solution, yet retains exactness, which has
been corroborated in various studies [5], [28], [29].



1) Electric Power Distribution Network: We cast the
SOCP-based AC branch flow model [5] in the power distribu-
tion system with generation constraints.

Py < ply, < PP VgP . Vh, (3a)
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Pon — Pgn—1 < RU, VgP,Vh, (3c)
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The power distribution model constrains power capacity (3a),
reserve capacity (3b), ramp capability (3c)-(3d), renewable
curtailment (3e), current flow (3f)-(3g), reserve requirement
(3h), AC power flow with an active and reactive power balance
(31)-(3m), and nodal voltage (3n). We assume the distribution
network operates in normal conditions with radiality. Note that
we consider neither reactive power support from ESSs nor
reactive power exchange in the boundary node for simplicity.

2) Natural Gas Distribution Network: We adopt the SOCP-
based Weymouth equation in the gas network model.

W(;nnm < Wan,h < Wmax Yan,Vh, (4a)
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The gas distribution model constrains nodal gas pressure
(4a), gas well procurement (4b), compressor ratio (4c), gas
flow limit (4d), compressor in/out flow (4e), SOCP-relaxed
Weymouth equation (4f), and gas load balance (4g). Note
that we follow the approximation in [28] for linearizing the
nonconvex model of the gas compressor.

3) Heat Distribution Network: We consider a linear VTCF
heat network model with guaranteed accuracy [29] as follows.

htg h — = CiMM, tg h (Tsfg h Tri],h)r Vtga Vh, (5a)
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with the heat pipeline loss defined as
ALisn = CiM;; h(Tstff h TS{}fh)

£ NsKop (s = Tn).

The heat network model follows a typical VTCF formulation
constraining the thermal energy conversion with temperature
(5a)-(5b), confluence nodal temperatures (5¢)-(5d), mass flow



balance (5e)-(5f), and heat inlet/outlet flow-temperature (5g)-
(5h). We perform a heuristic two-step hydraulic-thermal de-
composition to fix the mass flow rate M and hence reduce the
heat network model to a linear formulation, which reportedly
maintains accuracy. We refer to [29] for detailed descriptions
of the heuristic and the derivation of (5). Note that, unlike the
power and gas system, formulating the heat system dynamics
in (5) maintains the computational tractability while providing
a more accurate representation of the network. Besides, the
acceptably accurate representation and excellent solvability
of the VTCF model underly the motivation for using it in
the proposed coordinated energy hub analysis. For the CHP
operations, we adopt the convex polyhedron to model CHP
heat and power curves as discussed in our previous work [30],
which retains model convexity and is omitted here.

C. Energy Storage Operations

As the proposed framework considers the power ESS
(PESS) in transmission and distribution systems and the gas
ESS (GESS) in distribution systems, we discuss the ESS model

with a general formulation, i.e., pg;;D) = {pz:hvpg,h’ Uge,h }-
pghp _dgh,D) i’th)’ veT'P) vh, (6a)
ChTP < (TP < TR, velTP) \/h, (6b)
DRTP) < d(T D) < TP, veT-P) h, (6¢)
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velT'P) Wh, (6e)
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which includes ESS power equations (6a), charge/discharge
limits (6b)-(6¢), state-of-charge (SOC) equations (6d), SOC
limits (6e), and SOC consistency requirements (6f). Note that
it is not necessary to include the binary exclusiveness for
battery charging/discharging since it could be achieved by the
efficiency implementation and ESS operation price [31].

D. Ambiguity Set Construction

The uncertainty studied in this work includes the variable
renewable energy, while it could seamlessly extend to other
uncertainties such as load and price. We employ the Wasser-
stein distance for the ambiguity set construction. Note that it
works for both transmission and distribution systems. Consider
the uncertain renewable output ]5,.7h has a series of historical
observations {P!,, P?, ...P}. Given the compact support
space = = {Iz’hh € RT}, whose o-algebra contains the true
and empirical renewable generation probability distributions,
ie., P,P¥ € P(Z), we define the Wasserstein metric as

1nf /||Prh, E (AP, 5, dP] )},

where II denotes the joint probability distribution. Then we
construct the ambiguity set as

A= {PeP@E)Du(EP) < (1)},

Dy (P,

where ¢(E) is a tunable Wasserstein ball radius and P¥
serves as the centroid of A. Tt is crucial that ¢(FE) controls
the conservativeness of the ambiguity set and we follow an
improved criterion for its selection [32], i.e.,
1 1

E)=C4/=1 ,
where r is the confidence level, for which we typically use
95% in this study, and C is a scalar obtained by using the
bisection search method [32] to solve

o= mf 2\/ 1 [1+1n (E{epu M(PEh)H})]

p>

where M (PTEh) denotes the mean value of observations.

III. T&D DECENTRALIZATION AND SOLUTION STRATEGY

The proposed distributionally robust T&D problem indicates
a multi-agent and multi-objective optimization, which is hard
to solve as each agent presents a two-stage DRO problem
with independent ambiguity sets for uncertainties. In this
section, we delineate how we solve the individual subproblem
via the tailored C&CG method and decentralize the overall
coordination problem using the AAL algorithm.

A. DRO Subproblem Reformulation and Solution

As linear programming is a special case of SOCP, we give
a compact form for both (1) and (2) with uncertainty w and
without T&D superscripts as follows.

VT VD : min c'x+sup E{Q(y,w)}, (7a)
weA
subject to
|Ax+By + k| <q'x+p'y+h, (7b)
Q(y,w) = min dTy7 (7¢)
y
Ex+ Fy + Gw < m, (7d)

where (7b) and (7d) constrain the first- and second-stage
problems. We first reformulate the Wasserstein metric as

By _ - E B
Dy, (P, P¥) 111_1[f{/wHw,w (ITI(dw, dw )},

il { [ Bolw.wf P}, ®

where P(dw) denotes the probability distribution when w
falls in the centroid of A, given the conditional distribution
(dw,dw?) = E{P(dw)}. Based on (8), we rewrite the
second stage with the ambiguity set as a semi-infinite program

sup E{Q(y,w )}f&l% /E {Q(y,w) - P(dw)},
(9a)
subject to
/ P(dw) = My (9b)
/Ew{Hw,wEH}P(dw) < ¢(E) :C. (9¢)
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Fig. 1. Decentralized solution workflow by the C&CG-embedded AAL.

As problem (9) is always bounded with finite observations of
w, it is equivalent to dualize (9a) and replace the second stage
problem, which yields

mi?5 c'x+Eu{p, +¢ ¢(E)}, (10a)
x)l”‘w! HWw
subject to
|Ax +By +k| <q'x+p'y+h, (10b)
[dwlloo <€, (10c)
to > max {Q(y,w) — 8. (w—w")}, (10d)
Qy,w) =min {d"y}, (10e)
Yy
Ex+Fy + Gw <m, (10)

where the auxiliary variable §,, is introduced to bound the
dual norm [33]. We could efficiently solve problem (10) via
the C&CG algorithm tailored in [34]. Note that we place the
SOCEP constraints in the first stage to generate an exact lower-
bounding affine cut from the second stage, which accelerates
the optimal searching of the algorithm.

B. Decentralized T&D Information Exchange

After each DRO-based subproblem is solved, we present
a more general form for the revisited master problem in the
C&CG method upon convergence as

VT,VD: min F(x,x¢c), (11a)

subject to
g(X7 XC) < Oa (11b)
H(x,xc) =0, (11c)

where X denotes the common variables shared in the T&D
coordination, e.g., power injection at the boundary node.
Consider a centralized model including all agents’ operations,

T D
12
}I(Iélg]:xxc+§}"xxc) (12a)
subject to
x} =x2, (12b)

where W describes the T&D feasible region and (12b) uni-
fies the common variables. It is straightforward to write the

Multi-Energy Hub

Transmission System

tna tny
>

> e
tng
@ Power Distribution Network
QO Gas Distribution Network
acli @ Heat Distribution Network
Fig. 2. Network topology of the test system [35], [36].
individual Lagrangian functions for both agents as
T D Vil _
= FT(x",x%) + ZA x5 —%X8) + §||Xc =Xl
(13a)
D D Dy YT D
LP = FP(xP,x2) + AP (% —Xc)+§||xc—xc||27
(13b)

where AP defines the Lagrangian multipliers for the common
variable shared by each distribution network and v is the
second-order penalty step size. Then following Fig. 1, we
perform the AAL algorithm and solve each agent’s problem
in parallel. The merits of AAL include the double updates in
one iteration and the acceleration brought by using ¢ in both
updates for primal variables and Lagrangian multipliers, which
outperforms other optimality-conditioned methods [24].
Similar to [13], the subproblem’s solution process and
the AAL are independent. However, the AAL’s convergence
depends on the convergence of the inner C&CG process, which
is guaranteed by model convexity and linear recourse problems
with finite support. This feature protects each agent’s privacy
as the solution processes do not cross impact with only limited
information, e.g., boundary power injection, being exchanged.



TABLE II
COMPARISONS BETWEEN THE THREE CASES RESULTS

Case 1 Case 2 Case 3
Transmission Cost $27,293.1  $27,371.9 $32,116.8
- Generation $26,229.4  $26,431,7 $31,599.2
- ESS $1,063.7 $940.2 $517.6
- Load Shed 0 0 0
Distribution Cost $3,855.6 $4,262.1 $5,506.2
o Power Network -$2,294.9 $4,262.1 $5,506.2
- Generation 0 $4,889.2 $5,416.8
- ESS $144.7 $150.2 $89.4
- Load Shed 0 0 0
- Trade Revenue | -$2,439.6 -$777.4 -
» Gas Network $5,110.9 - -
- Generation $5,002.3 - -
- ESS $108.6 - -
- Load Shed 0 - -
o Heat Network $1,039.6 - -
- Generation $1,039.6 - -
- ESS - - -
- Load Shed 0 - -
Avg. Power Mismatch 0% 0% 23.8%
Network Loss 7.15MWh  10.47MWh  10.47MWh
Renewable Curtailment 1.39% 3.54% 10.73%

IV. NUMERICAL EXPERIMENTS

In this section, we validate the effectiveness of the pro-
posed market paradigm and solution strategy via quantitative
analyses on a standard test system. We carry out case studies
on the IEEE 6-bus transmission system connecting to two
multi-energy hubs based on the IEEE 13-bus distribution
system, whose data could be retrieved from [35]-[37]. Fig.
2 illustrates the test system’s topology. We solve all of the
SOCP subproblems by Gurobi 9.1 on a Windows PC with
quad-core Intel i7-6700 CPU and 8GB of RAM.

For the renewable uncertainty considered in the proposed
model, we normalize the historical data from a utility-level
wind turbine [38], and two DER-level photovoltaic panels [39].
Then we construct the ambiguity set following the procedure
described in Section II. D. for each distribution network.
Note that for different distribution systems, the ambiguity
set is independent since the training datasets from the his-
torical observations are i.i.d. For the AAL algorithm, we set
€1,€2 = 0.01 and select © = 0.25 and v = 2.2, fine-tuned by
computational trials.

A. Cost-effectiveness of Considering Multi-Energy Hubs

We first validate the cost-effectiveness of considering multi-
energy hubs by comparing the following cases.

e Case 1. T&D coordination with multi-energy hubs

e Case 2. T&D coordination with only power distribution

e Case 3. Disconnected T&D operations
For Case 2, we do not model the gas and heat distribution net-
works, while gas-fired generators ag;, ago use the normalized
gas fuel prices, and CHP is assumed as a linear-cost generator.
For Case 3, we perform the DRO-based multi-period ED

for both transmission and distribution systems independently
using fixed power exchange obtained by results in Case 2.

Table II tabulates the results of the three cases regarding
the economic performance of using different coordination
strategies. We use the finalized locational marginal prices in
the boundary node from the transmission side upon conver-
gence to calculate the power trade revenue, which means the
downstream operator could benefit from exporting power to
the upstream operator and vice versa. We also record the
average power mismatch as the active power difference in the
boundary node upon convergence.

As we compare Case 3 with Case I and Case 2, it is
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Fig. 4. Energy hub unit dispatch for Case 2.

straightforward to find the disconnected T&D operation is far
less cost-effective than the T&D coordination. The renewable
curtailment also raises if the two agents perform individual
optimization because the excess power from uncertain outputs
in different regions could not support each other. If we
compare Case I with Case 2, considering the multi-energy
hub in the T&D coordination yields higher profits since the
explicit network modeling reduces the potentially inaccurate
cost estimation of other energy sectors. Moreover, taking
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Fig. 5. Comparison between different uncertainty models
TABLE III

MAXIMUM SOCP GAP VALUES OF THE POWER AND GAS NETWORKS
(p.U.)

Power Network Gas Network

0.0039 0.0062

SOCP gap

GESSs into account contributes to better scheduling of the gas
units. For the network loss, the reason why Case I outperforms
other cases lies in the higher capacity factor of gas units and
lower power imports from the transmission system. They both
reduce the total electrical distance from power sources to load
buses in the distribution network.

Fig. 3 and Fig. 4 depict the detailed dispatch results for Case
1 and Case 2. The gas units’ dispatch is highly sensitive to the
gas retail price. For example, at Hour 3-8, the gas price is the
lowest in one day, making the gas units receive sufficient fuels
and generate more power to charge the PESS while exporting
power to the transmission grid. At noon, the PV generation
increases and helps the ESS store more energy to feed the
peak load at night. By comparing Case I and Case 2, the
lack of explicit gas network modeling lowers the capability of
the gas generation because no GESS would help with the gas
arbitrage. Moreover, the gas units could not sufficiently capture
the price fluctuation without the compressor model. Hence, the
weak gas units’ generation capability forces the downstream
operator to reduce the power export and reap lower revenues.
As the CHP is the only heat source in the heat network, it
needs to maintain the power level to ensure sufficient heat
supplies, which is common in residential districts [36].

B. Comparison between Uncertainty Models

To further demonstrate the advantage of using the DRO-
based uncertainty model, we test cases with other uncertainty
models, including Case 4 (deterministic), Case 5 (SP), and
Case 6 (RO). For Case 4, we use the K-means centroid
value of historical observations to represent the uncertainty.
For Case 5, we apply the Monte-Carlo sampling to generate
20 equiprobable scenarios and reduce (10) to a single-stage
stochastic conic program. For Case 6, we replace the ambi-
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Tter.

ADMM Convergence
T T T

r Converge at Iter. 9 B

o0—~oO o o

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
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BD Convergence
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Tter.

Fig. 6. Convergence of different types of algorithms

guity set with the polyhedral uncertainty set, [34] which is
constructed using the maximum and minimum values of the
renewable forecast, i.e.,

UR® = (P, | P < P, < P}

Fig. 5 illustrates the comparison. Case 4 serves as the base
case since the problem is solved with a widely applied but
inaccurate characterization of uncertainties. We could find the
SP in Case 5 yields the most cost-effective result among the
three uncertainty models, which is also closest to the base case,
but with more iterations required for the AAL convergence. In
each AAL iteration, the Lagrangian multiplier is updated as an
expected value of all scenarios’ outcomes, which hinders the
optimal search. RO in Case 6 achieves the fastest convergence
rate but with highly conservative solutions, as it always draws
the worst-case scenario in which the renewable generation
is limited. The DRO-based model in Case I, comparatively,
becomes the most competitive choice as it balances the trade-
off between computational speed and solution conservatism.
Albeit solving subproblems with different models requires
different times, the AAL algorithm parallelizes the subproblem
solution procedures, making the iteration counter comparable.

C. SOCP Exactness Evaluation

Our work adopts the SOCP relaxation in both the power
distribution and gas distribution systems as the branch flow
model and the relaxed Weymouth equation. Note that the
SOCP-based branch flow model has enjoyed wide recognition
for its exactness in representing the actual AC power flow
[40]. Similarly, the Weymouth equation can also be exactly
relaxed via the conic formulation, as reported in [41]. To
further validate the exactness of the SOCP approximation,
Table IIT shows the maximum SOCP gaps for both the power
and gas distribution networks.

As shown in Table III, the SOCP gap values are sufficiently
small for both networks, which proves the proposed methods’
exactness for approximating the DRO model’s energy flows.
It is also worth mentioning that this approximation cannot
completely substitute actual energy flow analyses but could



serve as a satisfactory starting setpoint when running energy
flow calculations with improved computational speed.

D. Decentralization Convergence Analysis

Though the AAL algorithm converges very quickly, its
convergence pattern is slightly different from other centralized
or decentralized methods. We are interested in investigating
the AAL convergence by comparing it with a centralized
method, Benders decomposition (BD), and another decentral-
ized method, ADMM. To simplify the BD, we reduce the
DRO-based subproblem to the deterministic equivalent form,
and hence (12) becomes a typical two-stage SP problem.
Fig. 6 reports the evolution of one boundary power injection
variable when A = 5 under the three algorithms. We could
observe that AAL crosses the optimal solution several times
because it utilizes two primal and Lagrangian updates in
each iteration to facilitate the solution, which asks for more
penalizing measures. While ADMM also has this pattern, its
convergence is slower than AAL. The centralized approach
of BD never crosses the optimal solution since the bounding
cuts are optimally conditioned, which guarantees the global
optimality albeit a low convergence rate.

E. Scalability Test

In this subsection, we provide an additional test on a large-
scale system to further validate the scalability of the proposed
method. The test system is a TI18E20 system consisting of
one IEEE 118-bus system with high renewable penetration
[42] and 20 duplicates of the multi-energy hub from Fig. 2.
We place the 20 energy hubs in the original load buses and
keep the renewable generators with the same dataset in Section
IV to generate the ambiguity set.

Fig. 7 presents the performance of the proposed method
in the large-scale test case. Since the proposed method is
a distributed algorithm, parallel computing is a natural way
to maximize resource usage for solving the problem. Each
transmission and distribution operator can solve their schedul-
ing problem locally and then communicate the Lagrangian
information. Hence, we record the highest computational time
per iteration that one agent needs to take to solve the local
problem. We also report the objective value deviation from
the optimally converged result to demonstrate the convergence
progress. From Fig. 7, we observe that by leveraging parallel
computing, solving large-scale T&D scheduling problems is
efficient at the minute level due to the fast convergence rate
of the AAL method.

V. CONCLUDING REMARKS

This paper proposes a novel scheduling framework as a
market paradigm for the T&D coordinative operation. The
proliferating penetration of renewable generation and the in-
creasingly closer connection with other energy sectors create
more uncertainties to the distribution side, propagating system-
level power mismatch to the transmission side and leading
to suboptimal decision-making. We consider the multi-energy
hub in the distribution system to fill this gap with state-of-the-
art modeling of uncertainties in both upstream and downstream
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Fig. 7. Computational performance of the scalability test

operators. Furthermore, the nature of T&D coordination re-
quires privacy-preserving operations between multiple agents,
while the AAL-based workflow shows its efficacy for handling
such a problem. The numerical experiments confirm the effec-
tiveness of the proposed modeling and solution strategies.
Future studies include considering a more realistic and
comprehensive market structure, such as the UC and balancing
market in the decentralized T&D scheme. It is also interesting
to further investigate whether the multi-energy hub as a dis-
tribution system could help the transmission operator mitigate
network congestions and contribute to carbon neutrality.
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